Global upper ocean heat content and climate variability

نویسنده

  • Peter C. Chu
چکیده

Observational data from the Global Temperature and Salinity Profile Program were used to calculate the upper ocean heat content (OHC) anomaly. The thickness of the upper layer is taken as 300 m for the Pacific/Atlantic Ocean and 150 m for the Indian Ocean since the Indian Ocean has shallower thermoclines. First, the optimal spectral decomposition scheme was used to build up monthly synoptic temperature and salinity dataset for January 1990 to December 2009 on 1°×1° grids and the same 33 vertical levels as the World Ocean Atlas. Then, the monthly varying upper layer OHC field (H) was obtained. Second, a composite analysis was conducted to obtain the total-time mean OHC field (H ) and the monthly mean OHC variability (e H), which is found an order of magnitude smaller than b H. Third, an empirical orthogonal function (EOF) method is conducted on the residue data (b H), deviating from e H+ e H, in order to obtain interannual variations of the OHC fields for the three oceans. In the Pacific Ocean, the first two EOF modes account for 51.46% and 13.71% of the variance, representing canonical El Nino/La Nina (EOF-1) and pseudo-El Nino/La Nina (i.e., El Nino Modoki; EOF-2) events. In the Indian Ocean, the first two EOF modes account for 24.27% and 20.94% of the variance, representing basin-scale cooling/warming (EOF-1) and Indian Ocean Dipole (EOF-2) events. In the Atlantic Ocean, the first EOF mode accounts for 49.26% of the variance, representing a basin-scale cooling/warming (EOF-1) event. The second EOF mode accounts for 8.83% of the variance. Different from the Pacific and Indian Oceans, there is no zonal dipole mode in the tropical Atlantic Ocean. Fourth, evident lag correlation coefficients are found between the first principal component of the Pacific Ocean and the Southern Oscillation Index with a maximum correlation coefficient (0.68) at 1-month lead of the EOF-1 and between the second principal component of the Indian Ocean and the Dipole Mode Index with maximum values (around 0.53) at 1–2-month advance of the EOF-2. It implies that OHC anomaly contains climate variability signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinctive climate signals in reanalysis of global ocean heat content

[1] The elusive nature of the post-2004 upper ocean warming has exposed uncertainties in the ocean’s role in the Earth’s energy budget and transient climate sensitivity. Here we present the time evolution of the global ocean heat content for 1958 through 2009 from a new observationbased reanalysis of the ocean. Volcanic eruptions and El Niño events are identified as sharp cooling events punctua...

متن کامل

Interannual Variability in Upper-Ocean Heat Content, Temperature and Thermosteric Expansion on Global Scales

Satellite altimetric height was combined with approximately 1,000,000 in situ temperature profiles to produce global estimates of upper-ocean heat content, temperature and thermosteric sea-level variability on interannual time scales. Maps of these quantities from mid-1993 through mid-2003 were calculated using the technique developed by Willis et al. [2003]. The time series of globally average...

متن کامل

Processes controlling upper-ocean heat content in Drake Passage

[1] A 16 year record of expendable bathythermograph transects across Drake Passage is used to examine variability in upper-ocean heat content that is not associated with the annual cycle. Links between upper-ocean heat content and anomalous heat fluxes, winds, two large-scale climate indices, and mesoscale eddies and meanders are examined. Results suggest that interannual variations in surface ...

متن کامل

Tracing the upper ocean’s “missing heat”

[1] Over the period 2003–2010, the upper ocean has not gained any heat, despite the general expectation that the ocean will absorb most of the Earth’s current radiative imbalance. Answering to what extent this heat was transferred to other components of the climate system and by what process(‐es) gets to the essence of understanding climate change. Direct heat flux observations are too inaccura...

متن کامل

Multi-model attribution of upper-ocean temperature changes using an isothermal approach

Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011